SoalSoal Nilai Mutlak 5 June 2022; Materi Persamaan Lingkaran Kelas 11 5 June 2022; Contoh Soal Lomba Matematika Tk 5 June 2022; Home / Athaul Handura 1 / Nilai Maksimum Dan Minimum Fungsi Trigonometri. Rumus Nilai Maksimum Dan Minimum Fungsi Trigonometri . Jika f”(x) 0 maka benar nilai minimumnya.
Berikut ini adalah Soal-Soal Grafik Fungsi Trigonometri, yaitu salah satu sub materi TRIGONOMETRI pada mata pelajaran Matematika Wajib Kelas 10. Silahkan dipelajari dan jangan lupa share/bagikan ke media sosial kalian, agar manfaat postingan ini dapat dirasakan oleh siswa/i yang lain. Terima Cara Belajar Cobalah mengerjakan soal-soal yang tersedia secara mandiri. Setelah itu cocokkanlah jawaban kamu dengan pembahasan yang telah disediakan, dengan cara klik "Lihat/Tutup". Soal No. 1 Amplitudo dan periode dari grafik berikut adalah …. A 2 dan $\pi $ B 4 dan $2\pi $ C 1 dan $\frac{\pi }{2}$ D 2 dan $2\pi $ E 2 dan $\frac{\pi }{2}$Penyelesaian Lihat/Tutup Dari grafik ${{y}_{\text{maks}}}=2$ ${{y}_{\text{min}}}=-2$ Amplitudo A adalah $\begin{align}A &=\frac{1}{2}\left {{y}_{\text{maks}}}-{{y}_{\text{min}}} \right \\ &=\frac{1}{2}\left 2-2 \right \\ &=\frac{1}{2}.4 \\ A &=2 \end{align}$ Periode p dimulai dari 0 sampai $2\pi $ maka $p=2\pi -0\Leftrightarrow p=2\pi $ Jadi, amplitudo dan periode dari grafik fungsi tersebut adalah 2 dan $2\pi $. Jawaban D Soal No. 2 Grafik di bawah ini mempunyai persamaan fungsi … A $y=-2\sin x$ B $y=2\sin x$ C $y=2\cos x$ D $y=-2\cos x$ E $y=\sin 2x$Penyelesaian Lihat/Tutup Dari grafik dan opsi dapat kita tentukan untuk sementara bahwa persamaannya adalah $y=A\sin kx$. ${{y}_{\text{maks}}}=2$ dan ${{y}_{\text{min}}}=-2$ $\begin{align}A &=\frac{1}{2}\left {{y}_{\text{maks}}}-{{y}_{\text{min}}} \right \\ &=\frac{1}{2}\left 2-2 \right \\ &=\frac{1}{2}.4 \\ A &=2 \end{align}$ Periode p dimulai dari 0 sampai $2\pi $ maka p = $2\pi $. Ingat periode fungsi sinus adalah $\begin{align}p &=\frac{2\pi }{k} \\ 2\pi &=\frac{2\pi }{k} \\ k &=\frac{2\pi }{2\pi } \\ k &=1 \end{align}$ Jadi, persamaan grafik tersebut adalah $y=A\sin kx\Leftrightarrow y=2\sin x$. Jawaban B Soal No. 3 Persamaan untuk kurva di bawah ini adalah …. A $y=3\sin \frac{3}{2}x$ B $y=3\sin \frac{2}{3}x$ C $y=3\sin 3x$ D $y=3\cos \frac{3}{2}x$ E $y=3\cos \frac{2}{3}x$Penyelesaian Lihat/Tutup Dari grafik dan opsi dapat kita tentukan bahwa persamaan fungsi grafik adalah $y=A\sin kx$. ${{y}_{\text{maks}}}=3$ dan ${{y}_{\text{min}}}=-3$ $\begin{align}A &=\frac{1}{2}\left {{y}_{\text{maks}}}-{{y}_{\text{min}}} \right \\ &=\frac{1}{2}\left 3-3 \right \\ &=\frac{1}{2}.6 \\ A &=3 \end{align}$ Periode p dimulai dari 0 sampai $3\pi $ maka p = $3\pi $. Ingat periode fungsi sinus adalah $\begin{align}p &=\frac{2\pi }{k} \\ 3\pi &=\frac{2\pi }{k} \\ k &=\frac{2\pi }{3\pi } \\ k &=\frac{2}{3} \end{align}$ Jadi, persamaan grafik tersebut adalah $y=A\sin kx\Leftrightarrow y=3\sin \frac{2}{3}x$. Jawaban B Soal No. 4 Persamaan untuk kurva di samping adalah …. A $y=-2\tan 2x$ B $y=-2\tan x$ C $y=-2\tan \frac{1}{2}x$ D $y=2\tan 2x$ E $y=2\tan x$Penyelesaian Lihat/Tutup Dari grafik dan opsi dapat kita tentukan untuk sementara persamaan grafik fungsi tersebut adalah $y=2\tan kx$. Periode p dimulai dari $-\frac{\pi }{4}$ sampai $\frac{\pi }{4}$ maka $p=\frac{\pi }{4}-\left -\frac{\pi }{4} \right\Leftrightarrow p=\frac{\pi }{2}$ Ingat periode fungsi tangen adalah $\begin{align}p &=\frac{\pi }{k} \\ \frac{\pi }{2} &=\frac{\pi }{k} \\ k &=2 \end{align}$ Jadi, persamaan grafik tersebut adalah $y=2\tan kx\Leftrightarrow y=2\tan 2x$ Jawaban D Soal No. 5 Grafik fungsi di bawah ini mempunyai persamaan …. A $y=2\sin \left x-\frac{1}{2}\pi \right$ B $y=2\sin \left \frac{1}{2}\pi -x \right$ C $y=2\sin \left 2x+\frac{1}{2}\pi \right$ D $y=-2\sin \left \frac{1}{2}\pi +x \right$ E $y=-2\sin \left \frac{1}{2}\pi -2x \right$Penyelesaian Lihat/Tutup Dari grafik dan opsi dapat kita tentukan untuk sementara persamaan grafik fungsi tersebut adalah $y=A\sin kx+b$. ${{y}_{\text{maks}}}=2$ dan ${{y}_{\text{min}}}=-2$ $\begin{align}A &=\frac{1}{2}\left {{y}_{\text{maks}}}-{{y}_{\text{min}}} \right \\ &=\frac{1}{2}\left 2-2 \right \\ &=\frac{1}{2}.4 \\ A &=2 \end{align}$ Periode p dimulai dari $-\frac{3}{4}\pi $ sampai $\frac{1}{4}\pi $, maka $p=\frac{1}{4}\pi -\left -\frac{3}{4}\pi \right\Leftrightarrow p=\pi $ Ingat periode fungsi sinus adalah $\begin{align} p &=\frac{2\pi }{k} \\ \pi &=\frac{2\pi }{k} \\ k &=\frac{2\pi }{\pi } \\ k &=2 \end{align}$ Grafik melalui titik $\left \frac{1}{2}\pi ,2 \right$, maka $\begin{align}y &=A\sin kx+b \\ y &=2\sin 2x+b \\ 2 &=2\sin \left 2.\frac{1}{2}\pi +b \right \\ 1 &=\sin \left \pi +b \right \\ \sin \frac{1}{2}\pi &=\sin \left \pi +b \right \\ \frac{1}{2}\pi &=\pi +b \\ b &=\frac{1}{2}\pi -\pi \\ b &=-\frac{1}{2}\pi \end{align}$ Jadi, persamaan grafik tersebut adalah $\begin{align}y &=A\sin kx+b \\ y &=2\sin \left 2x-\frac{1}{2}\pi \right \\ y &=2\sin -\left \frac{1}{2}\pi -2x \right \\ y &=-2\sin \left \frac{1}{2}\pi -2x \right \end{align}$ Jawaban E Soal No. 6 Sketsa grafik di bawah ini adalah sebagian dari grafik fungsi trigonometri yang persamaannya adalah …. A $y=2\cos 2x$ B $y=4\sin x$ C $y=4\cos x$ D $y=4\sin \frac{1}{2}x$ E $y=4\cos \frac{1}{2}x$Penyelesaian Lihat/Tutup Dari grafik dan opsi dapat kita tentukan untuk sementara persamaannya adalah $y=A\cos kx$. ${{y}_{\text{maks}}}=4$ dan ${{y}_{\text{min}}}=-4$ $\begin{align}A &=\frac{1}{2}\left {{y}_{\text{maks}}}-{{y}_{\text{min}}} \right \\ &=\frac{1}{2}\left 4-4 \right \\ A &=4 \end{align}$ Periode p dimulai dari $0{}^\circ $ sampai dengan $720{}^\circ $, maka $p=720{}^\circ -0{}^\circ \Leftrightarrow p=720{}^\circ $. Ingat periode fungsi cosinus adalah $\begin{align}p &=\frac{360{}^\circ }{k} \\ 720{}^\circ &=\frac{360{}^\circ }{k} \\ k &=\frac{360{}^\circ }{720{}^\circ } \\ k &=\frac{1}{2} \end{align}$ Jadi, persamaan grafik tersebut adalah $y=A\cos kx\Leftrightarrow y=4\cos \frac{1}{2}x$. Jawaban E Soal No. 7 Persamaan grafik di bawah ini adalah …. A $y=2\sin x-90{}^\circ $ B $y=\sin 2x-90{}^\circ $ C $y=2\sin x+90{}^\circ $ D $y=\sin 2x+90{}^\circ $ E $y=2\sin 2x+180{}^\circ $Penyelesaian Lihat/Tutup Dari grafik dan opsi maka dapat kita tentukan untuk sementara persamaannya adalah $y=A\sin kx+b$ ${{y}_{\text{maks}}}=2$ dan ${{y}_{\text{min}}}=-2$ $\begin{align}A &=\frac{1}{2}\left {{y}_{\text{maks}}}-{{y}_{\text{min}}} \right \\ &=\frac{1}{2}\left 2-2 \right \\ A &=2 \end{align}$ Periode p = $360{}^\circ $ Ingat periode fungsi sinus adalah $\begin{align}p &=\frac{360{}^\circ }{k} \\ 360{}^\circ &=\frac{360{}^\circ }{k} \\ k &=1 \end{align}$ $y=A\sin kx+b\Leftrightarrow y=2\sin x+b$ Melalui titik $\left 0{}^\circ ,2 \right$ maka $\begin{align}y &=2\sin x+b \\ 2 &=2\sin 0{}^\circ +b \\ 1 &=\sin b \\ \sin 90{}^\circ &=\sin b \\ b &=90{}^\circ \end{align}$ Jadi, persamaan grafik tersebut adalah$y=2\sin x+b\Leftrightarrow y=2\sin x+90{}^\circ $. Jawaban C Soal No. 8 Persamaan grafik di bawah ini adalah $y=a\cos kx$, untuk $0{}^\circ \le x\le 120{}^\circ $. Nilai $a$ dan $k$ berturut-turut adalah …. A $-2$ dan $\frac{1}{6}$ B 2 dan 3 C 2 dan $\frac{1}{3}$ D $-2$ dan 3 E $-2$ dan $\frac{1}{3}$Penyelesaian Lihat/Tutup $y=a\cos kx$ ${{y}_{\text{maks}}}=2$ dan ${{y}_{\min }}=-2$ $\begin{align}a &=\frac{1}{2}\left {{y}_{\text{maks}}}-{{y}_{\text{min}}} \right \\ &=\frac{1}{2}\left 2-2 \right \\ a &=2 \end{align}$ Periode p = $120{}^\circ $ Ingat periode fungsi cosinus adalah $\begin{align}p &=\frac{360{}^\circ }{k} \\ 120{}^\circ &=\frac{360{}^\circ }{k} \\ k &=\frac{360{}^\circ }{120{}^\circ } \\ k &=3 \end{align}$ Nilai $a$ dan $k$ berturut-turut adalah 2 dan 3. Jawaban B Soal No. 9 Persamaan fungsi trigonometri pada gambar grafik adalah … A $y=\sin x$ B $y=2\sin 3x$ C $y=3\sin 4x$ D $y=3\sin 2x$ E $y=3\sin \frac{1}{2}x$Penyelesaian Lihat/Tutup Berdasarkan grafik dan opsi untuk sementara dapat kita tentukan persamaannya adalah $y=A\sin kx$. ${{y}_{\text{maks}}}=3$ dan ${{y}_{\min }}=-3$ $\begin{align}a &=\frac{1}{2}\left {{y}_{\text{maks}}}-{{y}_{\text{min}}} \right \\ &=\frac{1}{2}\left 3-3 \right \\ a &=3 \end{align}$ Periode p = $\pi $ Ingat periode fungsi sinus adalah $\begin{align} p &=\frac{2\pi }{k} \\ \pi &=\frac{2\pi }{k} \\ k &=\frac{2\pi }{\pi } \\ k &=2 \end{align}$ Jadi, persamaan fungsi trigonometri pada grafik tersebut adalah $y=A\sin kx\Leftrightarrow y=3\sin 2x$. Jawaban D Soal No. 10 Perhatikan gambar berikut! Persamaan grafik fungsi pada gambar adalah …. A $y=-2\sin 3x+45{}^\circ $ B $y=-2\sin 3x-15{}^\circ $ C $y=-2\sin 3x-45{}^\circ $ D $y=2\sin 3x+15{}^\circ $ E $y=2\sin 3x-45{}^\circ $Penyelesaian Lihat/Tutup Dari grafik dapat kita tentukan untuk sementara persamaannya adalah $y=A\sin kx+b$. ${{y}_{\text{maks}}}=2$ dan ${{y}_{\text{maks}}}=-2$ $\begin{align}A &=\frac{1}{2}\left {{y}_{\text{maks}}}-{{y}_{\text{min}}} \right \\ &=\frac{1}{2}\left 2-2 \right \\ A &=2 \end{align}$ Periode dari $15{}^\circ $ sampai $135{}^\circ $ maka $p=135{}^\circ -15{}^\circ =120{}^\circ $ Ingat periode fungsi sinus adalah $\begin{align}p &=\frac{360{}^\circ }{k} \\ 120{}^\circ &=\frac{360{}^\circ }{k} \\ k &=\frac{360{}^\circ }{120{}^\circ } \\ k &=3 \end{align}$ Grafik melalui titik $45{}^\circ ,2$ maka $\begin{align}y &=A\sin kx+b \\ 2 &=2.\sin +b \\ 1 &=\sin 135{}^\circ +b \\ sin90{}^\circ &=\sin 135{}^\circ +b \\ 135{}^\circ +b &=90{}^\circ \\ b &=90{}^\circ -135{}^\circ \\ b &=-45{}^\circ \end{align}$ Jadi, persamaan grafik tersebut adalah $y=A\sin kx+b\Leftrightarrow y=2\sin 3x-45{}^\circ $. Jawaban E Soal No. 11 Nilai maksimum dari fungsi trigonometri $fx=\cos \left 8x-\frac{\pi }{8} \right-\frac{2}{3}$ adalah …. A $-\frac{1}{3}$ B $-\frac{1}{8}$ C 0 D $\frac{1}{8}$ E $\frac{1}{3}$Penyelesaian Lihat/Tutup Ingat bentuk umum fungsi trigonometri $fx=a\cos kx+b+c$ maka dari $fx=\cos \left 8x-\frac{\pi }{8} \right-\frac{2}{3}$ diperoleh $a=1$ dan $c=-\frac{2}{3}$ maka $\begin{align}{{f}_{\text{maks}}} &=a+c \\ &=1-\frac{2}{3} \\ {{f}_{\text{maks}}} &=\frac{1}{3} \end{align}$ Jawaban E Soal No. 12 Nilai minimum yang dapat dicapai oleh fungsi $fx=-2\cos x+1$ adalah … A $-3$ B $-2$ C $-1$ D 2 E 3Penyelesaian Lihat/Tutup Ingat bentuk umum fungsi trigonometri $fx=a\cos kx+b+c$ maka dari $fx=-2\cos x+1$ diperoleh $a=-2$ dan $c=1$ maka $\begin{align}{{f}_{\text{min}}} &=-a+c \\ &=-2+1 \\ {{f}_{\text{min}}} &=-1 \end{align}$ Jawaban C Soal No. 13 Jika $fx=2-{{\sin }^{2}}x$, maka fungsi $f$ memenuhi …. A $-2\le fx\le -1$ B $-2\le fx\le 1$ C $-1\le fx\le 0$ D $0\le fx\le 1$ E $1\le fx\le 2$Penyelesaian Lihat/Tutup Nilai $fx=2-{{\sin }^{2}}x$ akan minimum, jika ${{\sin }^{2}}x$ maksimum yaitu ${{\sin }^{2}}x=1$ maka ${{f}_{\text{min}}}=2-1=1$. Nilai $fx=2-{{\sin }^{2}}x$ akan maksimum, jika ${{\sin }^{2}}x$ minimum yaitu ${{\sin }^{2}}x=0$ maka ${{f}_{\text{maks}}}=2-0=2$. Nilai interval fungsi fx adalah $\begin{align}{{f}_{\text{min}}}\le fx &\le {{f}_{\text{maks}}} \\ 1\le fx & \le 2 \end{align}$ Jawaban E Soal No. 14 Jika $fx=5\sin x+2$ mempunyai maksimum $a$ dan minimum $b$ maka nilai $ab$ = …. A 0 B 3 C $-15$ D $-18$ E $-21$Penyelesaian Lihat/Tutup Bentuk umum $fx=A\sin kx+B+C$, maka dari $fx=5\sin x+2$ diperoleh $A=5$ dan $C=2$ $\begin{align}{{f}_{\text{maks}}} &=A+C \\ &=5+2 \\ a &=7 \end{align}$ $\begin{align}{{f}_{\text{min}}} &=-A+C \\ &=-5+2 \\ b &=-3 \end{align}$ $ab=7-3=-21$ Jawaban E Soal No. 15 Nilai minimum dari fungsi $fx=2\sin \left x-\frac{\pi }{3} \right+1$ adalah … A $-2$ B $-1$ C 0 D 1 E 2Penyelesaian Lihat/Tutup Ingat bentuk umum $fx=A\sin kx+b+c$ Dari $fx=2\sin \left x-\frac{\pi }{3} \right+1$ diperoleh $A=2$ dan c = 1 $\begin{align}{{y}_{\min }} &=-A+c \\ &=-2+1 \\ {{y}_{\min }} &=-1 \end{align}$ Jawaban B Semoga postingan Soal Grafik Fungsi Trigonometri dan Pembahasan ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih. Subscribe and Follow Our Channel
ContohSoal Menentukan Nilai Maksimum Dan Minimum Fungsi Trigonometri Contoh Soal Terbaru

Titik stasioner a dapat menyebabkan fa menjadi nilai maksimum, nilai minimum, atau menjadi titik belok fungsi. Hal ini dapat ditentukan dengan menggunakan uji turunan pertama dan kedua. Silakan simak penjelasannya pada video berikut. Setelah menyimak video, coba tuliskan di kolom komentar langkah-langkah menentukan nilai maksimum/minimum suatu fungsi trigonometri dengan bahasamu sendiri dan juga tuliskan jawaban latihan soal yang diberikan di akhir video. Jangan lupa tuliskan nama, kelas, dan asal sekolahmu. nilai maksimum fungsinilai minimum fungsititik belokturunan keduaturunan pertama

Nilai$a$ ditentukan oleh nilai maksimum dan nilai minimum fungsi, yakni $\begin{aligned} a & = \dfrac{\text{N. Maksimum} -\text{N. Minimum}}{2}\\ & = \dfrac{2 -(-2)}{2} = 2 \end{aligned}$ Grafik menunjukkan bahwa saat $x Besarnilai minimum dan maksimum fungsi trigonometri untuk fungsi dasar y = sin x dan y = cos x berturut-turut adalah –1 dan 1. Nilai minimum y = sin x salah satunya terjadi saat nilai x = 3 / 2 π dan nilai minimum y = cos x dicapai saat (salah satunya) x = π. Sudutsinus, cosinus, dan tangen adalah klasifikasi utama fungsi trigonometri. Dan ketiga fungsi trigonometri lainnya yaitu kotangen, secan, dan cosecan dapat diturunkan dari fungsi primer. Contoh Soal Fungsi Trigonometri. Tentukan nilai maksimum dan nilai minimum dari fungsi trigonometri di bawah ini! a. f(x) = 2 sin 2x + 5. b. f(x Teksvideo. Koperasi untuk menentukan titik balik maksimum dan minimum untuk fungsi trigonometri ini kita harus mengubah y menjadi y aksen atau kita turunkan Kenapa karena dikatakan y aksen itu sama dengan nol atau hasil tekanan yang pertama sama dengan nol ini cara untuk mengubahnya jika misalkan ada salah kan siang jadi kita pakai yang sin-sin UU ini adalah

Jikaf dan g adalah fungsi yang periodik dengan periode p, maka dan fg juga periodik dengan periode p. 1. Periode fungsi sinus dan kosinus. Untuk penambahan panjang busur dengan kelipatan (satu putran penuh) akan diperoleh titik p(a) yang sama, sehingga secara umum berlaku : Dengan demikian, fungsi sinus vatau dan fungsi kosinus atau adalah

wgyVkg4.
  • bje5gsnt7m.pages.dev/63
  • bje5gsnt7m.pages.dev/199
  • bje5gsnt7m.pages.dev/254
  • bje5gsnt7m.pages.dev/398
  • bje5gsnt7m.pages.dev/110
  • bje5gsnt7m.pages.dev/220
  • bje5gsnt7m.pages.dev/42
  • bje5gsnt7m.pages.dev/151
  • bje5gsnt7m.pages.dev/38
  • soal maksimum dan minimum fungsi trigonometri